Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Parasit Vectors ; 16(1): 384, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37880680

ABSTRACT

BACKGROUND: The ticks Ixodes ricinus and Dermacentor reticulatus are two of the most important vectors in Europe. Climate niche modelling has been used in many studies to attempt to explain their distribution and to predict changes under a range of climate change scenarios. The aim of this study was to assess the ability of different climate niche modelling approaches to explain the known distribution of I. ricinus and D. reticulatus in Europe. METHODS: A series of climate niche models, using different combinations of input data, were constructed and assessed. Species occurrence records obtained from systematic literature searches and Global Biodiversity Information Facility data were thinned to different degrees to remove sampling spatial bias. Four sources of climate data were used: bioclimatic variables, WorldClim, TerraClimate and MODIS satellite-derived data. Eight different model training extents were examined and three modelling frameworks were used: maximum entropy, generalised additive models and random forest models. The results were validated through internal cross-validation, comparison with an external independent dataset and expert opinion. RESULTS: The performance metrics and predictive ability of the different modelling approaches varied significantly within and between each species. Different combinations were better able to define the distribution of each of the two species. However, no single approach was considered fully able to capture the known distribution of the species. When considering the mean of the performance metrics of internal and external validation, 24 models for I. ricinus and 11 models for D. reticulatus of the 96 constructed were considered adequate according to the following criteria: area under the receiver-operating characteristic curve > 0.7; true skill statistic > 0.4; Miller's calibration slope 0.25 above or below 1; Boyce index > 0.9; omission rate < 0.15. CONCLUSIONS: This comprehensive analysis suggests that there is no single 'best practice' climate modelling approach to account for the distribution of these tick species. This has important implications for attempts to predict climate-mediated impacts on future tick distribution. It is suggested here that climate variables alone are not sufficient; habitat type, host availability and anthropogenic impacts, not included in current modelling approaches, could contribute to determining tick presence or absence at the local or regional scale.


Subject(s)
Dermacentor , Ixodes , Animals , Biodiversity , Ecosystem , Europe
2.
Viruses ; 15(6)2023 05 26.
Article in English | MEDLINE | ID: mdl-37376554

ABSTRACT

A seasonal trend of African swine fever (ASF) outbreaks in domestic pig farms has been observed in affected regions of Eastern Europe. Most outbreaks have been observed during the warmer summer months, coinciding with the seasonal activity pattern of blood-feeding insects. These insects may offer a route for introduction of the ASF virus (ASFV) into domestic pig herds. In this study, insects (hematophagous flies) collected outside the buildings of a domestic pig farm, without ASFV-infected pigs, were analyzed for the presence of the virus. Using qPCR, ASFV DNA was detected in six insect pools; in four of these pools, DNA from suid blood was also identified. This detection coincided with ASFV being reported in the wild boar population within a 10 km radius of the pig farm. These findings show that blood from ASFV-infected suids was present within hematophagous flies on the premises of a pig farm without infected animals and support the hypothesis that blood-feeding insects can potentially transport the virus from wild boars into domestic pig farms.


Subject(s)
African Swine Fever Virus , African Swine Fever , Swine , Animals , African Swine Fever Virus/genetics , Farms , Lithuania , Biosecurity , Sus scrofa , Disease Outbreaks/veterinary , Insecta
3.
Sci Rep ; 13(1): 7685, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37169798

ABSTRACT

Incidence of tick-borne encephalitis (TBE) has increased during the last years in Scandinavia, but the underlying mechanism is not understood. TBE human case data reported between 2010 and 2021 were aggregated into postal codes within Örebro County, south-central Sweden, along with tick abundance and environmental data to analyse spatial patterns and identify drivers of TBE. We identified a substantial and continuing increase of TBE incidence in Örebro County during the study period. Spatial cluster analyses showed significant hotspots (higher number of cases than expected) in the southern and northern parts of Örebro County, whereas a cold spot (lower number of cases than expected) was found in the central part comprising Örebro municipality. Generalised linear models showed that the risk of acquiring TBE increased by 12.5% and 72.3% for every percent increase in relative humidity and proportion of wetland forest, respectively, whereas the risk decreased by 52.8% for every degree Celsius increase in annual temperature range. However, models had relatively low goodness of fit (R2 < 0.27). Results suggest that TBE in Örebro County is spatially clustered, however variables used in this study, i.e., climatic variables, forest cover, water, tick abundance, sheep as indicator species, alone do not explain this pattern.


Subject(s)
Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne , Ticks , Humans , Animals , Sheep , Encephalitis, Tick-Borne/epidemiology , Encephalitis, Tick-Borne/veterinary , Sweden/epidemiology , Scandinavian and Nordic Countries , Incidence
4.
Zoonoses Public Health ; 70(6): 473-484, 2023 09.
Article in English | MEDLINE | ID: mdl-37248739

ABSTRACT

Ixodes ricinus ticks are Scandinavia's main vector for tick-borne encephalitis virus (TBEV), which infects many people annually. The aims of the present study were (i) to obtain information on the TBEV prevalence in host-seeking I. ricinus collected within the Øresund-Kattegat-Skagerrak (ØKS) region, which lies in southern Norway, southern Sweden and Denmark; (ii) to analyse whether there are potential spatial patterns in the TBEV prevalence; and (iii) to understand the relationship between TBEV prevalence and meteorological factors in southern Scandinavia. Tick nymphs were collected in 2016, in southern Scandinavia, and screened for TBEV, using pools of 10 nymphs, with RT real-time PCR, and positive samples were confirmed with pyrosequencing. Spatial autocorrelation and cluster analysis was performed with Global Moran's I and SatScan to test for spatial patterns and potential local clusters of the TBEV pool prevalence at each of the 50 sites. A climatic analysis was made to correlate parameters such as minimum, mean and maximum temperature, relative humidity and saturation deficit with TBEV pool prevalence. The climatic data were acquired from the nearest meteorological stations for 2015 and 2016. This study confirms the presence of TBEV in 12 out of 30 locations in Denmark, where six were from Jutland, three from Zealand and two from Bornholm and Falster counties. In total, five out of nine sites were positive from southern Sweden. TBEV prevalence of 0.7%, 0.5% and 0.5%, in nymphs, was found at three sites along the Oslofjord (two sites) and northern Skåne region (one site), indicating a potential concern for public health. We report an overall estimated TBEV prevalence of 0.1% in questing I. ricinus nymphs in southern Scandinavia with a region-specific prevalence of 0.1% in Denmark, 0.2% in southern Sweden and 0.1% in southeastern Norway. No evidence of a spatial pattern or local clusters was found in the study region. We found a strong correlation between TBEV prevalence in ticks and relative humidity in Sweden and Norway, which might suggest that humidity has a role in maintaining TBEV prevalence in ticks. TBEV is an emerging tick-borne pathogen in southern Scandinavia, and we recommend further studies to understand the TBEV transmission potential with changing climate in Scandinavia.


Subject(s)
Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne , Ixodes , Animals , Prevalence , Seasons , Encephalitis, Tick-Borne/epidemiology , Encephalitis, Tick-Borne/veterinary , Scandinavian and Nordic Countries/epidemiology , Meteorological Concepts , Nymph
5.
Viruses ; 15(3)2023 03 20.
Article in English | MEDLINE | ID: mdl-36992499

ABSTRACT

Tick-borne encephalitis (TBE) is a viral disease endemic in Eurasia. The virus is mainly transmitted to humans via ticks and occasionally via the consumption of unpasteurized milk products. The European Centre for Disease Prevention and Control reported an increase in TBE incidence over the past years in Europe as well as the emergence of the disease in new areas. To better understand this phenomenon, we investigated the drivers of TBE emergence and increase in incidence in humans through an expert knowledge elicitation. We listed 59 possible drivers grouped in eight domains and elicited forty European experts to: (i) allocate a score per driver, (ii) weight this score within each domain, and (iii) weight the different domains and attribute an uncertainty level per domain. An overall weighted score per driver was calculated, and drivers with comparable scores were grouped into three terminal nodes using a regression tree analysis. The drivers with the highest scores were: (i) changes in human behavior/activities; (ii) changes in eating habits or consumer demand; (iii) changes in the landscape; (iv) influence of humidity on the survival and transmission of the pathogen; (v) difficulty to control reservoir(s) and/or vector(s); (vi) influence of temperature on virus survival and transmission; (vii) number of wildlife compartments/groups acting as reservoirs or amplifying hosts; (viii) increase of autochthonous wild mammals; and (ix) number of tick species vectors and their distribution. Our results support researchers in prioritizing studies targeting the most relevant drivers of emergence and increasing TBE incidence.


Subject(s)
Dermacentor , Encephalitis, Tick-Borne , Ixodes , Animals , Humans , Europe/epidemiology , Animals, Wild , Mammals
6.
Front Vet Sci ; 9: 1046263, 2022.
Article in English | MEDLINE | ID: mdl-36686172

ABSTRACT

Introduction: Mosquitoes either biologically or mechanically transmit various vector-borne pathogens affecting pigs. Mosquito species display a wide variety of host preference, as well as host attraction and behaviours. Mosquito species attraction rates to- and feeding rates on pigs or other potential hosts, as well as the seasonal abundance of the mosquito species affects their pathogen transmission potential. Methods: We caught mosquitoes in experimental cages containing pigs situated in Romanian backyard farms. The host species of blood meals were identified with PCR and sequencing. Results: High feeding preferences for pigs were observed in Aedes vexans (90%), Anopheles maculipennis (80%) and Culiseta annulata (72.7%). However, due to a high abundance in the traps, Culex pipiens/torrentium were responsible for 37.9% of all mosquito bites on pigs in the Romanian backyards, despite low feeding rates on pigs in the cages (18.6%). We also found that other predominantly ornithophilic mosquito species, as well as mosquitoes that are already carrying a blood meal from a different (mammalian) host, were attracted to backyard pigs or their enclosure. Discussion: These results indicate that viraemic blood carrying, for instance, African swine fever virus, West-Nile virus or Japanese encephalitis virus could be introduced to these backyard pig farms and therefore cause an infection, either through subsequent feeding, via ingestion by the pig or by environmental contamination.

7.
Int J Parasitol Parasites Wildl ; 16: 175-182, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34660192

ABSTRACT

Raccoon dogs have successfully invaded Europe, including Denmark. Raccoon dogs are potential vectors and reservoir hosts of several zoonotic pathogens and thus have the potential for posing a threat to both human and animal health. This study includes analysis of four zoonotic parasites, 16 tick-borne pathogens and two pathogen groups from 292 raccoon dogs collected from January 2018 to December 2018. The raccoon dogs were received as a part of the Danish national wildlife surveillance program and were hunted, found dead or road killed. The raccoon dogs were screened for Alaria alata and Echinococcus multilocularis eggs in faeces by microscopy and PCR, respectively, Trichinella spp. larvae in muscles by digestion, antibodies against Toxoplasma gondii by ELISA and screening of ticks for pathogens by fluidigm real-time PCR. All raccoon dogs tested negative for E. multilocularis and Trichinella spp., while 32.9% excreted A. alata eggs and 42.7% were T. gondii sero-positive. Five tick-borne pathogens were identified in ticks collected from 15 raccoon dogs, namely Anaplasma phagocytophilum (20.0%), Babesia venatorum (6.7%), Borrelia miyamotoi (6.7%), Neoehrlichia mikurensis (6.7%) and Rickettsia helvetica (60.0%). We identified raccoon dogs from Denmark as an important reservoir of T. gondii and A. alata infection to other hosts, including humans, while raccoon dogs appear as a negligible reservoir of E. multilocularis and Trichinella spp. infections. Our results suggest that raccoon dogs may be a reservoir of A. phagocytophilum.

8.
Sci Rep ; 11(1): 3527, 2021 02 11.
Article in English | MEDLINE | ID: mdl-33574465

ABSTRACT

We caught stable- and house flies on a Danish LA-MRSA positive pig farm. Stable- and house flies were housed together and culled over time to test for the presence of live LA-MRSA bacteria at 24 h intervals to establish the length of time for which LA-MRSA can persist on flies. On average, 7% of stable flies and 27% of house flies tested positive for LA-MRSA immediately upon removal from the farm. LA-MRSA prevalence decreased over time and estimates based on a Kaplan-Meier time-to-event analysis indicated that the probability of a stable- or house fly testing positive for LA-MRSA was 5.4% and 7.8% after 24 h, 3.5% and 4.3% after 48 h, 3.1% and 2.2% after 72 h and 0.4% and 0% after 96 h of removal from the pig farm, respectively. Simultaneously, we found that caged cultivated house flies became carriers of LA-MRSA, without direct contact with pigs, in the same proportions as wild flies inside the farm. We provide distance distributions of Danish pig farms and residential addresses as well as the calculated maximum dispersal potentials of stable- and house flies, which suggest that there is a potential for stable- and house flies dispersing live LA-MRSA bacteria into the surrounding environment of a pig farm. This potential should therefore be considered when modelling the spread between farms or the risk posed to humans living in close proximity to LA-MRSA pig farm sources.


Subject(s)
Houseflies/microbiology , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Muscidae/microbiology , Staphylococcal Infections/microbiology , Animals , Denmark , Farms , Houseflies/pathogenicity , Livestock/microbiology , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Muscidae/pathogenicity , Staphylococcal Infections/transmission , Staphylococcal Infections/veterinary , Swine/microbiology
9.
Sci Rep ; 10(1): 19376, 2020 11 09.
Article in English | MEDLINE | ID: mdl-33168841

ABSTRACT

Tick-borne pathogens cause diseases in animals and humans, and tick-borne disease incidence is increasing in many parts of the world. There is a need to assess the distribution of tick-borne pathogens and identify potential risk areas. We collected 29,440 tick nymphs from 50 sites in Scandinavia from August to September, 2016. We tested ticks in a real-time PCR chip, screening for 19 vector-associated pathogens. We analysed spatial patterns, mapped the prevalence of each pathogen and used machine learning algorithms and environmental variables to develop predictive prevalence models. All 50 sites had a pool prevalence of at least 33% for one or more pathogens, the most prevalent being Borrelia afzelii, B. garinii, Rickettsia helvetica, Anaplasma phagocytophilum, and Neoehrlichia mikurensis. There were large differences in pathogen prevalence between sites, but we identified only limited geographical clustering. The prevalence models performed poorly, with only models for R. helvetica and N. mikurensis having moderate predictive power (normalized RMSE from 0.74-0.75, R2 from 0.43-0.48). The poor performance of the majority of our prevalence models suggest that the used environmental and climatic variables alone do not explain pathogen prevalence patterns in Scandinavia, although previously the same variables successfully predicted spatial patterns of ticks in the same area.


Subject(s)
Ixodes/physiology , Models, Biological , Tick Infestations/epidemiology , Tick-Borne Diseases/epidemiology , Animals , Humans , Prevalence , Scandinavian and Nordic Countries/epidemiology
12.
Sci Data ; 7(1): 238, 2020 07 16.
Article in English | MEDLINE | ID: mdl-32678090

ABSTRACT

Ticks carry pathogens that can cause disease in both animals and humans, and there is a need to monitor the distribution and abundance of ticks and the pathogens they carry to pinpoint potential high risk areas for tick-borne disease transmission. In a joint Scandinavian study, we measured Ixodes ricinus instar abundance at 159 sites in southern Scandinavia in August-September, 2016, and collected 29,440 tick nymphs at 50 of these sites. We additionally measured abundance at 30 sites in August-September, 2017. We tested the 29,440 tick nymphs in pools of 10 in a Fluidigm real-time PCR chip to screen for 17 different tick-associated pathogens, 2 pathogen groups and 3 tick species. We present data on the geolocation, habitat type and instar abundance of the surveyed sites, as well as presence/absence of each pathogen in all analysed pools from the 50 collection sites and individual prevalence for each site. These data can be used alone or in combination with other data for predictive modelling and mapping of high-risk areas.


Subject(s)
Animal Distribution , Ixodes/microbiology , Animals , Ecosystem , Nymph/microbiology , Scandinavian and Nordic Countries
13.
Parasit Vectors ; 13(1): 265, 2020 May 20.
Article in English | MEDLINE | ID: mdl-32434592

ABSTRACT

BACKGROUND: Culicoides obsoletus is an abundant and widely distributed Holarctic biting midge species, involved in the transmission of bluetongue virus (BTV) and Schmallenberg virus (SBV) to wild and domestic ruminants. Females of this vector species are often reported jointly with two morphologically very close species, C. scoticus and C. montanus, forming the Obsoletus/Scoticus Complex. Recently, cryptic diversity within C. obsoletus was reported in geographically distant sites. Clear delineation of species and characterization of genetic variability is mandatory to revise their taxonomic status and assess the vector role of each taxonomic entity. Our objectives were to characterize and map the cryptic diversity within the Obsoletus/Scoticus Complex. METHODS: Portion of the cox1 mitochondrial gene of 3763 individuals belonging to the Obsoletus/Scoticus Complex was sequenced. Populations from 20 countries along a Palaearctic Mediterranean transect covering Scandinavia to Canary islands (North to South) and Canary islands to Turkey (West to East) were included. Genetic diversity based on cox1 barcoding was supported by 16S rDNA mitochondrial gene sequences and a gene coding for ribosomal 28S rDNA. Species delimitation using a multi-marker methodology was used to revise the current taxonomic scheme of the Obsoletus/Scoticus Complex. RESULTS: Our analysis showed the existence of three phylogenetic clades (C. obsoletus clade O2, C. obsoletus clade dark and one not yet named and identified) within C. obsoletus. These analyses also revealed two intra-specific clades within C. scoticus and raised questions about the taxonomic status of C. montanus. CONCLUSIONS: To our knowledge, our study provides the first genetic characterization of the Obsoletus/Scoticus Complex on a large geographical scale and allows a revision of the current taxonomic classification for an important group of vector species of livestock viruses in the Palaearctic region.


Subject(s)
Ceratopogonidae/classification , Genetic Variation , Insect Vectors/classification , Phylogeny , Animals , Ceratopogonidae/virology , Cyclooxygenase 1/genetics , DNA Barcoding, Taxonomic , Europe , Female , Geography , Insect Vectors/virology , Livestock/virology , Sequence Analysis, DNA
14.
Sci Rep ; 10(1): 7796, 2020 05 08.
Article in English | MEDLINE | ID: mdl-32385297

ABSTRACT

In Europe, Lyme neuroborreliosis (LNB) is the most severe manifestation of Lyme borreliosis and has recently been added to the communicable disease surveillance list for EU/EEA by the European Commission. In Northern Europe, LNB is primarily caused by the spirochete Borrelia garinii and transmitted by the tick Ixodes ricinus. This Danish observational epidemiologic case-control study includes every identified LNB patient (n = 401) on Funen, Denmark, from 1995-2014. We display spatial and temporal LNB incidence variation, seasonal distribution of cases and local spatial case clustering. Seasonal patterns show LNB symptom-onset peaking in July and a significant seasonal difference in number of cases (p < 0.01). We found no significant change in seasonality patterns over time when dividing the study period into 5-year intervals. We identified a significant local geographical hot-spot of cases with a relative risk of 2.44 (p = 0.013). Analysis revealed a significantly shorter distance to nearest forest for cases compared with controls (p < 0.001). We present a novel map of the focal geographical distribution of LNB cases in a high endemic borreliosis area. Continued studies of case clustering in the epidemiology of LNB are of key importance in guiding intervention strategies.


Subject(s)
Borrelia burgdorferi , Lyme Neuroborreliosis/epidemiology , Lyme Neuroborreliosis/microbiology , Cluster Analysis , Denmark/epidemiology , Geography, Medical , History, 21st Century , Humans , Incidence , Lyme Neuroborreliosis/history , Public Health Surveillance , Seasons , Spatio-Temporal Analysis
15.
Parasit Vectors ; 13(1): 194, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32295627

ABSTRACT

BACKGROUND: Culicoides biting midges transmit viruses resulting in disease in ruminants and equids such as bluetongue, Schmallenberg disease and African horse sickness. In the past decades, these diseases have led to important economic losses for farmers in Europe. Vector abundance is a key factor in determining the risk of vector-borne disease spread and it is, therefore, important to predict the abundance of Culicoides species involved in the transmission of these pathogens. The objectives of this study were to model and map the monthly abundances of Culicoides in Europe. METHODS: We obtained entomological data from 904 farms in nine European countries (Spain, France, Germany, Switzerland, Austria, Poland, Denmark, Sweden and Norway) from 2007 to 2013. Using environmental and climatic predictors from satellite imagery and the machine learning technique Random Forests, we predicted the monthly average abundance at a 1 km2 resolution. We used independent test sets for validation and to assess model performance. RESULTS: The predictive power of the resulting models varied according to month and the Culicoides species/ensembles predicted. Model performance was lower for winter months. Performance was higher for the Obsoletus ensemble, followed by the Pulicaris ensemble, while the model for Culicoides imicola showed a poor performance. Distribution and abundance patterns corresponded well with the known distributions in Europe. The Random Forests model approach was able to distinguish differences in abundance between countries but was not able to predict vector abundance at individual farm level. CONCLUSIONS: The models and maps presented here represent an initial attempt to capture large scale geographical and temporal variations in Culicoides abundance. The models are a first step towards producing abundance inputs for R0 modelling of Culicoides-borne infections at a continental scale.


Subject(s)
Ceratopogonidae , Machine Learning , Population Dynamics , Animals , Ceratopogonidae/virology , Climate , Ecosystem , Europe , Farms , Insect Vectors/virology , Models, Theoretical , Seasons
16.
Transbound Emerg Dis ; 67(4): 1472-1484, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32150785

ABSTRACT

Following its introduction into Georgia in 2007, African swine fever virus (ASFV) has become widespread on the European continent and in Asia. In many cases, the exact route of introduction into domestic pig herds cannot be determined, but most introductions are attributed to indirect virus transmission. In this review, we describe knowledge gained about different matrices that may allow introduction of the virus into pig herds. These matrices include uncooked pig meat, processed pig-derived products, feed, matrices contaminated with the virus and blood-feeding invertebrates. Knowledge gaps still exist, and both field studies and laboratory research are needed to enhance understanding of the risks for ASFV introductions, especially via virus-contaminated materials, including bedding and feed, and via blood-feeding, flying insects. Knowledge obtained from such studies can be applied to epidemiological risk assessments for the different transmission routes. Such assessments can be utilized to help predict the most effective biosecurity and control strategies.


Subject(s)
African Swine Fever Virus/physiology , African Swine Fever/transmission , Swine Diseases/transmission , African Swine Fever/virology , Animals , Asia , Europe , Risk , Sus scrofa , Swine , Swine Diseases/virology
17.
Sci Rep ; 9(1): 18144, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31792296

ABSTRACT

Recently, focus on tick-borne diseases has increased as ticks and their pathogens have become widespread and represent a health problem in Europe. Understanding the epidemiology of tick-borne infections requires the ability to predict and map tick abundance. We measured Ixodes ricinus abundance at 159 sites in southern Scandinavia from August-September, 2016. We used field data and environmental variables to develop predictive abundance models using machine learning algorithms, and also tested these models on 2017 data. Larva and nymph abundance models had relatively high predictive power (normalized RMSE from 0.65-0.69, R2 from 0.52-0.58) whereas adult tick models performed poorly (normalized RMSE from 0.94-0.96, R2 from 0.04-0.10). Testing the models on 2017 data produced good results with normalized RMSE values from 0.59-1.13 and R2 from 0.18-0.69. The resulting 2016 maps corresponded well with known tick abundance and distribution in Scandinavia. The models were highly influenced by temperature and vegetation, indicating that climate may be an important driver of I. ricinus distribution and abundance in Scandinavia. Despite varying results, the models predicted abundance in 2017 with high accuracy. The models are a first step towards environmentally driven tick abundance models that can assist in determining risk areas and interpreting human incidence data.


Subject(s)
Ixodes , Models, Biological , Animals , Ecosystem , Environmental Monitoring , Female , Forests , Larva , Male , Population Density , Scandinavian and Nordic Countries , Weather
18.
Euro Surveill ; 24(43)2019 Oct.
Article in English | MEDLINE | ID: mdl-31662158

ABSTRACT

During summer 2019, three patients residing by Tisvilde Hegn, Denmark were hospitalised with tick-borne encephalitis (TBE) after tick bites. A new TBE virus (TBEV) micro-focus was identified in tick nymphs collected around a playground in Tisvilde Hegn forest. Estimated TBEV prevalence was 8%, higher than in endemic areas around Europe. Whole genome sequencing showed clustering to a TBEV strain from Norway. This is the second time TBEV is found in Ixodes ricinus outside Bornholm, Denmark.


Subject(s)
Encephalitis Viruses, Tick-Borne/isolation & purification , Encephalitis, Tick-Borne/diagnosis , Ixodes/virology , RNA, Viral/genetics , Adult , Aged , Animals , Encephalitis Viruses, Tick-Borne/genetics , Female , Fever/etiology , Headache/etiology , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Male , Middle Aged , RNA, Viral/isolation & purification , Whole Genome Sequencing
19.
Sci Rep ; 9(1): 13466, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31530858

ABSTRACT

We used a mechanistic transmission model to estimate the number of infectious bites (IBs) generated per bluetongue virus (BTV) infected host (cattle) using estimated hourly microclimatic temperatures at 22,004 Danish cattle farms for the period 2000-2016, and Culicoides midge abundance based on 1,453 light-trap collections during 2007-2016. We used a range of published estimates of the duration of the hosts' infectious period and equations for the relationship between temperature and four key transmission parameters: extrinsic incubation period, daily vector survival rate, daily vector biting rate and host-to-vector transmission rate resulting in 147,456 combinations of daily IBs. More than 82% combinations of the parameter values predicted > 1 IBs per host. The mean IBs (10-90th percentiles) for BTV per infectious host were 59 (0-73) during the transmission period. We estimated a maximum of 14,954 IBs per infectious host at some farms, while a best-case scenario suggested transmission was never possible at some farms. The use of different equations for the vector survival rate and host-to-vector transmission rates resulted in large uncertainty in the predictions. If BTV is introduced in Denmark, local transmission is very likely to occur. Vectors infected as late as mid-September (early autumn) can successfully transmit BTV to a new host until mid-November (late autumn).


Subject(s)
Bluetongue/transmission , Ceratopogonidae/virology , Insect Vectors , Models, Biological , Animals , Cattle , Cattle Diseases/transmission , Cattle Diseases/virology , Denmark , Ecosystem , Farms , Insect Bites and Stings , Insect Vectors/virology , Seasons , Temperature , Weather
20.
Parasit Vectors ; 12(1): 338, 2019 Jul 09.
Article in English | MEDLINE | ID: mdl-31288866

ABSTRACT

The taiga tick, Ixodes persulcatus, has previously been limited to eastern Europe and northern Asia, but recently its range has expanded to Finland and northern Sweden. The species is of medical importance, as it, along with a string of other pathogens, may carry the Siberian and Far Eastern subtypes of tick-borne encephalitis virus. These subtypes appear to cause more severe disease, with higher fatality rates than the central European subtype. Until recently, the meadow tick, Dermacentor reticulatus, has been absent from Scandinavia, but has now been detected in Denmark, Norway and Sweden. Dermacentor reticulatus carries, along with other pathogens, Babesia canis and Rickettsia raoultii. Babesia canis causes severe and often fatal canine babesiosis, and R. raoultii may cause disease in humans. We collected 600 tick nymphs from each of 50 randomly selected sites in Denmark, southern Norway and south-eastern Sweden in August-September 2016. We tested pools of 10 nymphs in a Fluidigm real time PCR chip to screen for I. persulcatus and D. reticulatus, as well as tick-borne pathogens. Of all the 30,000 nymphs tested, none were I. persulcatus or D. reticulatus. Our results suggest that I. persulcatus is still limited to the northern parts of Sweden, and have not expanded into southern parts of Scandinavia. According to literature reports and supported by our screening results, D. reticulatus may yet only be an occasional guest in Scandinavia without established populations.


Subject(s)
Dermacentor/physiology , Ixodes/physiology , Animal Distribution , Animals , Arthropod Vectors/microbiology , Arthropod Vectors/parasitology , Babesiosis/prevention & control , Dermacentor/microbiology , Dermacentor/parasitology , Dogs , Encephalitis, Tick-Borne/prevention & control , Epidemiological Monitoring , Grassland , Ixodes/microbiology , Ixodes/parasitology , Norway/epidemiology , Nymph/virology , Scandinavian and Nordic Countries/epidemiology , Sweden/epidemiology , Tick Infestations/epidemiology , Tick-Borne Diseases/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...